The Gyrokinetic Regime Geometry Velocity Space Linear How-To

Coordinates

Start from Vlasov equation with a collision operator:

$$\frac{\partial \mathcal{F}_s}{\partial t} + \mathbf{v} \cdot \nabla \mathcal{F}_s + \mathbf{a} \cdot \frac{\partial \mathcal{F}_s}{\partial \mathbf{v}} = C(\mathcal{F}_s)$$

Acknowledge parallel and perpendicular dynamics are different:

$$\mathbf{v} = \mathbf{v}_{\perp} + \hat{\mathbf{b}}v_{\parallel}.$$

Go to energy and magnetic moment coordinates

$$E = \frac{1}{2}mv^2 \qquad \qquad \mu = \frac{1}{2}mv_{\perp}^2/B$$

with inverse transformation

$$v_{\parallel}^2 = 2(E - \mu B)/m$$
 $\mathbf{v}_{\perp} = v_{\perp}(\mathbf{e}_1 \cos \xi + \mathbf{e}_2 \sin \xi)$

where e_1, e_2, \hat{b} form an orthogonal coordinate system.

Guiding Center Transformation

 First key step is coordinate transformation, from

$$(\mathbf{x}, v_{\parallel}, v_{\perp}, \xi) \longrightarrow (\mathbf{x}', E, \mu, \xi)$$

- ullet Second key step is average over ξ
- ullet The difference between ${\bf x}$ and ${\bf x}'$ is the difference between the position of the particle and its guiding center.

(Perpendicular velocity is subtle!)

Ordering Assumptions

• Define:

$$\left| \frac{\rho}{F_0} \frac{\partial F_0}{\partial \mathbf{x}} \right| \sim \frac{\rho}{L} \equiv \rho_*$$

Require slow evolution of equilibrium:

$$\left| \frac{1}{\Omega F_0} \frac{\partial F_0}{\partial t} \right| \sim \rho_*^3$$

(transport time scale, τ)

• For fluctuations, require

$$\frac{\omega}{\Omega} \sim \rho \hat{\mathbf{b}} \cdot \nabla' \sim \frac{\delta f}{f} \sim \frac{\delta B}{B} \sim \frac{v_E}{v_t} \sim \rho_*$$
 but allow

$$ho \hat{\mathbf{b}} imes
abla' = k_{\perp}
ho \sim 1$$

 Note there are three time scales:

$$\Omega^{-1}, \qquad \omega^{-1}, \qquad \tau$$

Dynamical Equation

- Expand F and fields in small parameter ($\sim \rho_*$)
- Find equilibrium is independent of gyrophase ξ , $F_0 = F_0(E, \mu, \mathbf{x})$. Solubility condition yields $\hat{\mathbf{b}} \cdot \nabla F_0 = 0$
- Assume equilibrium has isotropic pressure: $F_0 = F_0(E, \mathbf{x}_{\perp})$
- Perturbed distribution function still has ξ dependence. GK equation describes evolution of h, the non-adiabatic, ξ -independent part:

$$\left(\frac{d}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla + i\omega_d + C\right) h = i\omega_*^T \chi - q \frac{\partial F_0}{\partial \epsilon} \frac{\partial \chi}{\partial t}.$$

Notation Defined

Time derivative includes nonlinear terms:

$$\frac{dh}{dt} = \frac{\partial h}{\partial t} + \frac{c}{B} \left\{ \chi, h \right\}.$$

• Generalized potential is

$$\chi = J_0(\gamma) \left(\Phi - \frac{v_{\parallel}}{c} A_{\parallel} \right) + \frac{J_1(\gamma) m v_{\perp}^2 \delta B_{\parallel}}{\gamma q} B.$$

- ullet Argument of Bessel functions is $\gamma = k_\perp v_\perp/\Omega$
- Curvature and ∇B drifts from ω_d :

$$\omega_d = \mathbf{k}_{\perp} \cdot \mathbf{B}_0 \times \left(m v_{\parallel}^2 \hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} + \mu \nabla B_0 \right) / (m B_0 \Omega),$$

Integrals over Velocity

- To find fields, need Maxwell's equations. Sources (charge, current) are integrals over velocity and sums over species
- Integrals evaluated at position x; requires coordinate transformation for $h = h(E, \mu, \mathbf{x'})$. Example:

$$\int d^3v h = \frac{B}{m^2} \int \frac{d\epsilon \, d\mu \, d\xi}{|v_{\parallel}|} h \exp(iL) \equiv \frac{1}{2\pi} \int d^2v \, d\xi \, h \exp(iL)$$

where $L = (\mathbf{v} \times \hat{\mathbf{b}} \cdot k_{\perp})/\Omega$ accounts for the gyrophase dependence.

• Integral over ξ results in Bessel functions:

$$\frac{1}{2\pi} \int d\xi \, h \exp(iL) = h J_0(\gamma)$$

Maxwell's Equations

• Poisson's equation:

$$\nabla_{\perp}^{2} \Phi = 4\pi \sum_{s} \int d^{2}v \, q \left[q \Phi \frac{\partial F_{0}}{\partial E} + J_{0}(\gamma)h \right]$$

• Ampere's law:

$$\nabla_{\perp}^2 A_{\parallel} = -\frac{4\pi}{c} \sum_{s} \int d^2 v \, q v_{\parallel} J_0(\gamma) h$$

Perturbed force balance:

$$\frac{\delta B_{\parallel}}{B} = -\frac{4\pi}{B^2} \sum_{s} \int d^2 v \, m v_{\perp}^2 \frac{J_1(\gamma)}{\gamma} h$$

Review of Key Points

- Existence of multiple space and time scales:
 - Dynamics slow compared to Ω
 - Equilibrium frozen on dynamical time scale
 - Weak variation of equilibrium scale lengths
- Equilibrium quantities constant on flux surface
- Small amplitude fluctuations

Review of Key Points

- Velocity-space coordinates are (E, μ)
 - Can trade magnetic moment μ for pitch angle $\lambda = \mu/E$
- $k_{\parallel} \ll k_{\perp}$ implies high toroidal mode numbers.
- No restriction on any of

$$eta, \quad k_\perp
ho, \quad rac{\omega}{k_\parallel v_t}, \quad rac{\omega}{\omega_d}, \quad rac{\omega}{\omega_b}, \quad rac{\omega}{
u}, \quad rac{\omega}{\omega_{NL}}$$

Additional Nonlinearities

"Parallel" nonlinearity ordered small:

$$\hat{\mathbf{b}} \cdot \nabla \Phi \left(\frac{\partial \delta f}{\partial v_{\parallel}} \right) \sim \hat{\mathbf{b}} \cdot \nabla \Phi \left(\frac{\delta f}{v_{t}} \right) \ll \hat{\mathbf{b}} \cdot \nabla \Phi \left(\frac{\partial F_{0}}{\partial v_{\parallel}} \right) \sim \hat{\mathbf{b}} \cdot \nabla \Phi \left(\frac{F_{0}}{v_{t}} \right)$$

Likely a good assumption in fully developed turbulence

Nonlinearities in Maxwell equations:

$$\delta(n\Phi) \sim n_0(\delta\Phi) + (\delta n)\Phi_0 + (\delta n)(\delta\Phi)$$

Dropped because fluctuation amplitudes are ordered small (no perp gradient here)

Time evolution of equilibrium strictly forbidden

References

• P. Catto, Plasma Physics, 20:719, 1978

• T. Antonsen and B. Lane, Phys. Fluids, 23:1205, 1980

• E. A. Frieman and L. Chen, Phys. Fluids, 24:502, 1982